Easy methods to Lose Money With Deepseek
페이지 정보

본문
The Associated Press beforehand reported that DeepSeek has laptop code that could ship some user login data to a Chinese state-owned telecommunications firm that has been barred from operating within the United States, in accordance with the security research firm Feroot. According to the company’s analysis, the code seems to seize detailed data about the system a person logs in from - a course of called fingerprinting. Feroot, which makes a speciality of figuring out threats on the net, identified computer code that's downloaded and triggered when a person logs into DeepSeek. That is exemplified in their DeepSeek-V2 and DeepSeek-Coder-V2 fashions, with the latter extensively considered one of the strongest open-source code models available. By implementing these strategies, DeepSeekMoE enhances the efficiency of the mannequin, allowing it to carry out better than different MoE models, especially when dealing with bigger datasets. On November 2, 2023, DeepSeek started rapidly unveiling its fashions, starting with DeepSeek Coder.
This time builders upgraded the previous model of their Coder and now DeepSeek-Coder-V2 helps 338 languages and 128K context length. The freshest mannequin, released by DeepSeek in August 2024, is an optimized model of their open-source model for theorem proving in Lean 4, DeepSeek-Prover-V1.5. In January 2024, this resulted in the creation of more superior and environment friendly models like DeepSeekMoE, which featured a complicated Mixture-of-Experts architecture, and a brand new version of their Coder, DeepSeek-Coder-v1.5. In May 2024, they released the DeepSeek-V2 collection. DeepSeek-V2 introduces Multi-Head Latent Attention (MLA), a modified attention mechanism that compresses the KV cache right into a much smaller form. 특히, DeepSeek만의 혁신적인 MoE 기법, 그리고 MLA (Multi-Head Latent Attention) 구조를 통해서 높은 성능과 효율을 동시에 잡아, 향후 주시할 만한 AI 모델 개발의 사례로 인식되고 있습니다. DeepSeekMoE는 LLM이 복잡한 작업을 더 잘 처리할 수 있도록 위와 같은 문제를 개선하는 방향으로 설계된 MoE의 고도화된 버전이라고 할 수 있습니다. 다시 DeepSeek 이야기로 돌아와서, DeepSeek 모델은 그 성능도 우수하지만 ‘가격도 상당히 저렴’한 편인, 꼭 한 번 살펴봐야 할 모델 중의 하나인데요. 조금만 더 이야기해 보면, 어텐션의 기본 아이디어가 ‘디코더가 출력 단어를 예측하는 각 시점마다 인코더에서의 전체 입력을 다시 한 번 참고하는 건데, 이 때 모든 입력 단어를 동일한 비중으로 고려하지 않고 해당 시점에서 예측해야 할 단어와 관련있는 입력 단어 부분에 더 집중하겠다’는 겁니다.
DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. 역시 중국의 스타트업인 이 DeepSeek의 기술 혁신은 실리콘 밸리에서도 주목을 받고 있습니다. 중국 AI 스타트업 DeepSeek이 GPT-4를 넘어서는 오픈소스 AI 모델을 개발해 많은 관심을 받고 있습니다. DeepSeek의 오픈소스 모델 DeepSeek-V2, 그리고 DeepSeek-Coder-V2 모델은 독자적인 ‘어텐션 메커니즘’과 ‘MoE 기법’을 개발, 활용해서 LLM의 성능을 효율적으로 향상시킨 결과물로 평가받고 있고, 특히 DeepSeek-Coder-V2는 현재 기준 가장 강력한 오픈소스 코딩 모델 중 하나로 알려져 있습니다. 이런 방식으로 코딩 작업에 있어서 개발자가 선호하는 방식에 더 정교하게 맞추어 작업할 수 있습니다. DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 또 한 가지 주목할 점은, DeepSeek의 소형 모델이 수많은 대형 언어모델보다 상당히 좋은 성능을 보여준다는 점입니다. DeepSeek-Coder-V2 모델은 수학과 코딩 작업에서 대부분의 모델을 능가하는 성능을 보여주는데, Qwen이나 Moonshot 같은 중국계 모델들도 크게 앞섭니다.
불과 두 달 만에, DeepSeek는 뭔가 새롭고 흥미로운 것을 들고 나오게 됩니다: 바로 2024년 1월, 고도화된 MoE (Mixture-of-Experts) 아키텍처를 앞세운 DeepSeekMoE와, 새로운 버전의 코딩 모델인 DeepSeek-Coder-v1.5 등 더욱 발전되었을 뿐 아니라 매우 효율적인 모델을 개발, 공개한 겁니다. 허깅페이스 기준으로 지금까지 DeepSeek이 출시한 모델이 48개인데, 2023년 DeepSeek과 비슷한 시기에 설립된 미스트랄AI가 총 15개의 모델을 내놓았고, 2019년에 설립된 독일의 알레프 알파가 6개 모델을 내놓았거든요. 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다. Sparse computation on account of utilization of MoE. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? DeepSeek-V2는 위에서 설명한 혁신적인 MoE 기법과 더불어 DeepSeek 연구진이 고안한 MLA (Multi-Head Latent Attention)라는 구조를 결합한 트랜스포머 아키텍처를 사용하는 최첨단 언어 모델입니다. Multi-Head Latent Attention (MLA): In a Transformer, consideration mechanisms assist the model concentrate on essentially the most relevant parts of the input. This reduces redundancy, guaranteeing that different consultants deal with distinctive, specialised areas. However it struggles with guaranteeing that every professional focuses on a singular area of data.
For more about DeepSeek AI; Https://Www.Consult-Exp.Com, have a look at the site.
- 이전글Robot Cleaners For Household 25.02.10
- 다음글Five Killer Quora Answers On Replacement Double Glazing Units Near Me 25.02.10
댓글목록
등록된 댓글이 없습니다.