Eight Awesome Recommendations on Deepseek From Unlikely Sources > 자유게시판

Eight Awesome Recommendations on Deepseek From Unlikely Sources

페이지 정보

profile_image
작성자 Lucile
댓글 0건 조회 49회 작성일 25-02-03 16:16

본문

Muga-Deep-Diver.png DeepSeek, a company primarily based in China which goals to "unravel the mystery of AGI with curiosity," has launched DeepSeek LLM, a 67 billion parameter model educated meticulously from scratch on a dataset consisting of 2 trillion tokens. However, The Wall Street Journal said when it used 15 issues from the 2024 version of AIME, the o1 mannequin reached an answer faster than DeepSeek-R1-Lite-Preview. Shao et al. (2024) Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, M. Zhang, Y. Li, Y. Wu, and D. Guo. Shi et al. (2023) F. Shi, M. Suzgun, M. Freitag, X. Wang, S. Srivats, S. Vosoughi, H. W. Chung, Y. Tay, S. Ruder, D. Zhou, D. Das, and J. Wei. Suzgun et al. (2022) M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi, D. Zhou, et al. Shazeer et al. (2017) N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. V. Le, G. E. Hinton, and J. Dean. Vaswani et al. (2017) A. Vaswani, ديب سيك N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Lepikhin et al. (2021) D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun, N. Shazeer, and Z. Chen.


Qi et al. (2023a) P. Qi, X. Wan, G. Huang, and M. Lin. Peng et al. (2023a) B. Peng, J. Quesnelle, H. Fan, and E. Shippole. Touvron et al. (2023a) H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Touvron et al. (2023b) H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Thakkar et al. (2023) V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan, J. Kosaian, M. Hoemmen, H. Wu, A. Kerr, M. Nicely, D. Merrill, D. Blasig, F. Qiao, P. Majcher, P. Springer, M. Hohnerbach, J. Wang, and M. Gupta.


Su et al. (2024) J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Luo et al. (2024) Y. Luo, Z. Zhang, R. Wu, H. Liu, Y. Jin, K. Zheng, M. Wang, Z. He, G. Hu, L. Chen, et al. Xia et al. (2023) H. Xia, T. Ge, P. Wang, S. Chen, F. Wei, and Z. Sui. Chen, N. Wang, S. Venkataramani, V. V. Srinivasan, X. Cui, W. Zhang, and K. Gopalakrishnan. Li et al. (2024b) Y. Li, F. Wei, C. Zhang, and H. Zhang. Li et al. (2021) W. Li, F. Qi, M. Sun, X. Yi, and J. Zhang. Sun et al. (2019b) X. Sun, J. Choi, C.-Y. Sun et al. (2019a) K. Sun, D. Yu, D. Yu, and C. Cardie. GGUF is a new format introduced by the llama.cpp crew on August twenty first 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Absolutely outrageous, and an incredible case research by the analysis staff. Rewardbench: Evaluating reward fashions for language modeling. For my first release of AWQ models, I'm releasing 128g models only.


search-for-apartment.jpg The first drawback that I encounter during this project is the Concept of Chat Messages. "Our rapid aim is to develop LLMs with strong theorem-proving capabilities, aiding human mathematicians in formal verification initiatives, such as the latest venture of verifying Fermat’s Last Theorem in Lean," Xin stated. Not only that, StarCoder has outperformed open code LLMs just like the one powering earlier variations of GitHub Copilot. This is cool. Against my personal GPQA-like benchmark deepseek v2 is the actual finest performing open supply mannequin I've tested (inclusive of the 405B variants). Take a look at the leaderboard here: BALROG (official benchmark site). Deepseek’s official API is appropriate with OpenAI’s API, so simply need so as to add a brand new LLM beneath admin/plugins/discourse-ai/ai-llms. If you’re trying to do that on GPT-4, which is a 220 billion heads, you need 3.5 terabytes of VRAM, which is forty three H100s. All you want is a machine with a supported GPU.



If you liked this article and you simply would like to receive more info pertaining to ديب سيك i implore you to visit our internet site.

댓글목록

등록된 댓글이 없습니다.